Friday, 25 April 2008

Physics Education

Physics Education

Main article: Physics Education

Physics Education refers both to the methods currently used to teach physics, and to an area of pedagogical research that seeks to improve those methods. Historically, physics has been taught at the high school and university level primarily by the lecture method, together with laboratory exercises aimed at verifying concepts taught in the lectures.

Applied physics

Applied physics

Main article: Applied Physics

Applied Physics is a general term for physics which is intended for a particular use. Applied is distinguished from pure by a subtle combination of factors such as the motivation and attitude of researchers and the nature of the relationship to the technology or science that may be affected by the work.It usually differs from engineering in that an applied physicist may not be designing something in particular, but rather is using physics or conducting physics research with the aim of developing new technologies or solving a problem. The approach is similar to that of applied mathematics. Applied physicists can also be interested in the use of physics for scientific research. For instance, people working on accelerator physecs might seek to build better particle detectors for research in theoretical physics.

Physics is used heavily in engeeniarin For example statics, a subfield of mechnics, is used in the building of bridges or other structures, while acoustics is used to design better concert halls. An understanding of physics is important to the design of realistic flight simulators, video game physics engines, and movies.

Astrophysics in Physics

Astrophysics

Main articles: Astrophysics and Physical cosmology
The deepest visible-light image of the universe, the Hubble Ultra Deep Field

The deepest visible-light image of the universe, the Hubble Ultra Deep Field

Astrophysics and astronomy are the application of the theories and methods of physics to the study of stellar structure, stellar evolution, the origin of the solar system, and related problems of cosmology. Because astrophysics is a broad subject, astrophysicists typically apply many disciplines of physics, including mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum mechanics, relativity, nuclear and particle physics, and atomic and molecular physics.

Astrophysics developed from the ancient science of astronomy. Astronomers of early civilizations performed methodical observations of the night sky, and astronomical artifacts have been found from much earlier periods. After centuries of developments by Babylonian and Greek astronomers, western astronomy lay dormant for fourteen centuries until Nicolaus Copernicus modified the Ptolemaic system by placing the sun at the center of the universe. Tycho Brahe's detailed observations led to Kepler's laws of planetary motion, and Galileo's telescope helped the discipline develop into a modern science. Isaac Newton's theory of universal gravitation provided a physical, dynamic basis for Kepler's laws. By the early 19th cent., the science of celestial mechanics had reached a highly developed state at the hands of Leonhard Euler, J. L. Lagrange, P. S. Laplace, and others. Powerful new mathematical techniques allowed solution of most of the remaining problems in classical gravitational theory as applied to the solar system. At the end of the 19th century, the discovery of spectral lines in sunlight proved that the chemical elements found in the Sun were also found on Earth. Interest shifted from determining the positions and distances of stars to studying their physical composition (see stellar structure and stellar evolution). Because the application of physics to astronomy became increasingly important throughout the 20th century, the distinction between astronomy and astrophysics has faded.

The discovery by Karl Jansky in 1931 that radio signals were emitted by celestial bodies initiated the science of radio astronomy. Most recently, the frontiers of astronomy have been expanded by space exploration. Perturbations and interference from the earth’s atmosphere make space-based observations necessary for infrared, ultraviolet, gamma-ray, and X-ray astronomy. The Hubble Space Telescope, launched in 1990, has made possible visual observations of a quality far exceeding those of earthbound instruments; earth-bound observatories using telescopes with adaptive optics will now be able to compensate for the turbulence of Earth's atmosphere.

Physical cosmology is the study of the formation and evolution of the universe on its largest scales. Albert Einstein’s theory of relativity plays a central role in all modern cosmological theories. In the early 20th century, Hubble's discovery that the universe was expanding, as shown by the Hubble diagram, prompted rival explanations known as the steady state universe and the Big Bang. The Big Bang was confirmed by the success of Big Bang nucleosynthesis and the discovery of the cosmic microwave background in 1964. The Big Bang model rests on two theoretical pillars: Albert Einstein's general relativity and the cosmological principle. Cosmologists have recently established a precise model of the evolution of the universe, which includes cosmic inflation, dark energy and dark matter.

High energy/particle physics

High energy/particle physics

Main article: Particle physics
A simulated event in the CMS detector of the Large Hadron Collider, featuring the appearance of the Higgs boson.

A simulated event in the CMS detector of the Large Hadron Collider, featuring the appearance of the Higgs boson.

Particle physics is the study of the elementary constituents of matter and energy, and the interactions between them. It may also be called "high energy physics", because many elementary particles do not occur naturally, but are created only during high energy collisions of other particles, as can be detected in particle accelerators.

Currently, the interactions of elementary particles are described by the Standard Model. The model accounts for the 12 known particles of matter that interact via the strong, weak, and electromagnetic fundamental forces. Dynamics are described in terms of matter particles exchanging messenger particles that carry the forces. These messenger particles are known as gluons, W- and W+ and Z bosons, and the photons, respectively. The Standard Model also predicts a particle known as the Higgs boson, the existence of which has not yet been verified.

Atomic, molecular, and optical in Physics

Atomic, molecular, and optical

A military scientist operates a laser on an optical table.

A military scientist operates a laser on an optical table.

Atomic, molecular, and optical physics (AMO) is the study of matter-matter and light-matter interactions on the scale of single atoms or structures containing a few atoms. The three areas are grouped together because of their interrelationships, the similarity of methods used, and the commonality of the energy scales that are relevant. All three areas include both classical and quantum treatments; they can treat their subject from a microscopic view (in contrast to a macroscopic view).

Atomic physics studies the electron hull of atoms. Current research focuses on activities in quantum control, cooling and trapping of atoms and ions, low-temperature collision dynamics, the collective behavior of atoms in weakly interacting gases (Bose-Einstein Condensates and dilute Fermi degenerate systems), precision measurements of fundamental constants, and the effects of electron correlation on structure and dynamics. Atomic physics is influenced by the nucleus (see, e.g., hyperfine splitting), but intra-nuclear phenomenon such as fission and fusion are considered part of high energy physics.

Molecular physics focuses on multi-atomic structures and their internal and external interactions with matter and light. Optical physics is distinct from optics in that it tends to focus not on the control of classical light fields by macroscopic objects, but on the fundamental properties of optical fields and their interactions with matter in the microsc

Condensed matter in Physics

Condensed matter

Velocity-distribution data of a gas of rubidium atoms, confirming the discovery of a new phase of matter, the Bose–Einstein condensate

Velocity-distribution data of a gas of rubidium atoms, confirming the discovery of a new phase of matter, the Bose–Einstein condensate

Condensed matter physics is the field of physics that deals with the macroscopic physical properties of matter. In particular, it is concerned with the "condensed" phases that appear whenever the number of constituents in a system is extremely large and the interactions between the constituents are strong. The most familiar examples of condensed phases are solids and liquids, which arise from the bonding and electromagnetic force between atoms. More exotic condensed phases include the superfluid and the Bose-Einstein condensate found in certain atomic systems at very low temperature, the superconducting phase exhibited by conduction electrons in certain materials, and the ferromagnetic and antiferromagnetic phases of spins on atomic lattices.

Condensed matter physics is by far the largest field of contemporary physics. Much progress has also been made in theoretical condensed matter physics. By one estimate, one third of all American physicists identify themselves as condensed matter physicists. Historically, condensed matter physics grew out of solid-state physics, which is now considered one of its main subfields. The term condensed matter physics was apparently coined by Philip Anderson when he renamed his research group — previously solid-state theory — in 1967. In 1978, the Division of Solid State Physics at the American Physical Society was renamed as the Division of Condensed Matter Physics.[22] Condensed matter physics has a large overlap with chemistry, materials science, nanotechnology and engineering.

Research fields in Physics

Research fields

Contemporary research in physics can be broadly divided into condensed matter physics; atomic, molecular, and optical physics; particle physics; and astrophysics. Some physics departments also support research in Physics education. Since the twentieth century, the individual fields of physics have become increasingly specialized, and today most physicists work in a single field for their entire careers. "Universalists" such as Albert Einstein (18791955) and Lev Landau (19081968), who worked in multiple fields of physics, are now very rare.[21] A table of the major fields of physics, along with their subfields and the theories they employ, can be found here